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We have formulated a relaxation mechanism for ferrites and ferromagnets �insulators and metals� whereby
the coupling between the magnetic motion and lattice is based purely on continuum arguments concerning
magnetostriction. This theoretical approach contrasts with previous mechanisms based on microscopic formu-
lations of spin-phonon interactions employing a discrete lattice. Our model explains the scaling of the intrinsic
ferromagnetic resonance linewidth with frequency, with temperature ��1 /Ms�T�� and the anisotropic nature of
magnetic relaxation in ordered magnetic materials. Here, Ms�T� is the thermal saturation magnetization. With-
out introducing adjustable parameters, our model is in reasonable quantitative agreement with experimental
measurements of the intrinsic magnetic resonance linewidths of important class of ordered magnetic materials
including both insulators and metals.
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I. INTRODUCTION

Since the discovery of magnetic resonance, the physics
community has been fascinated with possible mechanisms to
explain the absorption linewidth or the relaxation time in
magnetic materials. It was, and still is, a very challenging
problem. Magnetic relaxation is important to understand be-
cause it affects a number of technologies, including com-
puter, microwave, electronics, nanotechnology, and medical
applications. Ultimately, the physical limitation of any tech-
nology which incorporates magnetic materials of any size,
shape, and combinations thereof comes down to precise
knowledge of the relaxation time of the magnetic material
being utilized.

The background of various calculations or formulations of
magnetic relaxation for the past 60 years or so can be sum-
marized briefly as follows: �i� the relaxation times in para-
magnetic materials1 are characterized by two parameters, T1
and T2, wherein T2

−1 describes the magnetic resonance line-
width and T1 describes the time taken for the external mag-
netic field Zeeman energy density −Hext ·M to relax into
thermal equilibrium. These times have been modeled in
terms of various coupling schemes, i.e., spin-spin and/or
spin-lattice interactions.2 Since the coupling between spins is
relatively weak, as it should be in a paramagnetic material,
the coupling to the lattice involves discrete spin sites rather
than a collective cluster of spins. As such, paramagnetic cou-
pling is necessarily microscopic in nature. For example, a
microscopic coupling scheme was formulated3 whereby a
spin Hamiltonian was modulated by the lattice motion. Vari-
ants to this approach have been very successful in explaining
relaxation in paramagnetic materials. �ii� The magnetic relax-
ation of ferrimagnetic or ferromagnetic resonance �FMR�
linewidth is characterized by the Gilbert parameter4 �, or
equivalently by the Landau-Lifshitz parameter5 �L. In such
equations of motion, the magnitude of the magnetization M
= �M� remains constant in time. Thus spins rotate collectively

in the Gilbert equation of motion so that this may occur.
Much of the successful microscopic approaches or formu-

lations utilized in paramagnetic materials were transferred
over to models6 which attempted to explain the Gilbert equa-
tions. In some sense this presented a contradiction or para-
dox which was conveniently ignored. As it is well known
that collective excitations in a ferrimagnetic or ferromagnetic
state can be adequately described in terms classical con-
tinuum models, although microscopic descriptions remain
perhaps more accurate.7 To our knowledge very few or per-
haps any microscopic models have been successful in ex-
plaining the origin of the Gilbert equations. For example,
much attention was given in 1970s to explain the FMR line-
width in yttrium iron garnet �Y3Fe5O12� since its linewidth
was the narrowest ever measured in a ferrimagnetic
material.8 Clearly, there was less to explain, and perhaps
spin-lattice interactions could be treated at discrete spin sites
as in paramagnetic materials. These calculations8 contained
many approximations and predicted an FMR linewidth about
1/10 to 1/100 of the measured linewidth. We believe that this
is the best agreement between theory and experiment on re-
laxation in an ordered magnetic material. The purpose of this
work is to improve upon the predictability of a theoretical
model not only on a given material but in general for any
ordered magnetic materials without restoring to any approxi-
mations and assumptions.

We have adopted a conventional continuum magnetome-
chanical description of the magnetic and elastic states of the
ferrimagnetic or ferromagnetic crystal.9–11 The advantage of
this description is that the microscopic spin-lattice coupling
need not be formulated since it has already been included in
the continuum model which has been proved to be experi-
mentally correct. We introduce a thermodynamic argument
stating that the heat exchange between the magnetic and
elastic systems must treated as the same. As such, the Gilbert
equations may be directly related to the elastic sound wave
relaxation time and the coupling strength between the mag-
netic and elastic systems. Specifically, we will show that �̃ is
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proportional to the square of the magnetostriction constants
and inversely proportional to �M� wherein � is the elastic
relaxation time. In addition, the model predicts that �̃ cannot
be presumed to be a scalar as it often has been done in the
past; i.e., �̃ is predicted to be an anisotropic second rank
tensor in a single-crystal material. Some other workers have
previously noted the tensor nature of the Gilbert damping
coefficients.12,13

It is clear that one needs an interaction between phonons
and electron spins to account for Gilbert damping parameter
�. Suhl14 has considered such coupling schemes. The Gilbert
damping parameter can be thought of as a transport coeffi-
cient in much the same way as conductivity and/or viscosity
are transport coefficients. Such transport coefficients de-
scribe heating processes by which otherwise long-lived
modes are damped. One can in fact relate the Gilbert damp-
ing parameter to conductivity and/or viscosity. For metallic
ferromagnetic materials, conductivity as well as the equiva-
lent electron viscosity produces a considerable amount of
magnetic damping via eddy current heating. For magnetic
insulators it is the viscosity which determines the magnetic
damping. As it is well known, conductivity and viscosity can
be nonzero even in zero-frequency limit. Hence, the implied
Gilbert damping parameter is also nonzero at zero frequency.
Remarkably our final expression for the Gilbert damping still
hold true for metals wherein same electronic excitations
dominate both the magnetic damping and the viscosity. Elec-
tronic viscosity is well known to dominate sound-wave at-
tenuation in metals.15 In Suhl and Hickey and Moodera’s16

papers they find, in the limit of zero frequency and zero wave
number, that the real part of � is zero. This limiting case
suggests that they have not included the zero-frequency
transport coefficients consistently in their theory. In our deri-
vation the expected result at zero frequency occur naturally
in our formalism. In general, we believe the very nature of
discreteness �as in paramagnetic materials� gives rise to rela-
tively long magnetic relaxation times. However, the mag-
netic relaxation time of a coherent collection of spins �as in
FMR� implies shorter relaxation times since it involves col-
lective acoustic waves in the interaction scheme. Our present
theoretical treatment takes this into account via the con-
tinuum magnetomechanics.

In Sec. II the Gilbert equations of motion are reviewed
and the role of a dissipative magnetic intensity H� is ex-
plained. In Sec. III, the thermodynamic notion of adiabatic
magnetostriction coefficients are given as an adiabatic re-
sponse in the strain to a magnetic moment change. Equiva-
lently, there will be an adiabatic change in the magnetic field
to an applied crystal stress. In Sec. IV, the heating rates due
to Gilbert FMR damping and viscous sound-wave damping
will be reviewed. A rigorous relationship is derived between
the viscous heating rate for strain waves and the Gilbert heat-
ing rate for changing magnetic moments. This is a central
result of this work. In Sec. V, a detailed comparison is made
with previous experiments and with predictions of our theo-
retical works. Finally, in the concluding Sec. VI, we make a
summary and a detailed comparison between our model and
predictions of previous theoretical works.

II. GILBERT EQUATION

A distinguishing feature of the collective coherent mag-
netic moments in FMR is that the magnitude of the magne-
tization, M = �M� remains fixed which requires a magnetic
resonance equation of the simple form

dM

dt
= �M � Htot, �1�

wherein the gyromagnetic ratio �=ge /2mc. The total mag-
netic intensity Htot has a thermodynamic part determined by
the energy per unit volume u,

du = Tds + H · dM + �:de , �2�

or the enthalpy per unit volume w,

dw = Tds + H · dM − e:d� , �3�

wherein � is the crystal stress and e is the crystal strain.
There is a dissipative part H� of the magnetic intensity de-
termined by the Gilbert tensor �̃,

H� = � 1

�M
��̃ ·

dM

dt
. �4�

All together

Htot = H + H�,

Htot = � �w

�M
�

s,e
+ � 1

�M
��̃ ·

dM

dt
. �5�

Eqs. �1� and �5� imply that all components of the magnetiza-
tion must relax simultaneously in a way which conserves the
magnitude of the magnetization.

III. MAGNETOSTRICTION

The adiabatic magnetostriction coefficients are defined in
thermodynamics as

2�ijklMk = M2� �eij

�Ml
�

s,�
= − M2� �Hl

�	ij
�

s,M
, �6�

wherein a thermodynamic Maxwell relation has been applied
to Eq. �3�. For adiabatic changes in time for the magnetiza-
tion,

Ṁ = MṄ wherein N =
M

M
, �7�

Eq. �7� implies the time-varying magnetostrictive strain as
given by

ėij = 2�ijklNkṄl. �8�

Equation �8� describes magnetostriction as a time-varying
strain e which results from a time-varying unit vector N in
the direction of the magnetization.

IV. HEATING RATES

From Eq. �4�, it is evident that the heating rate per unit
volume due to the dissipative magnetic intensity H� obeys
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Q̇ =
dM

dt
· H�,

Q̇ = � 1

�M
	dM

dt
· �̃ ·

dM

dt
,

Q̇ =
M

�
Ṅi�ijṄj , �9�

and �̃ is a second rank tensor

�̃ = 
�xx �xy �xz

�yx �yy �yz

�zx �zy �zz
� . �10�

In virtue of the magnetoelastic effect,17 a changing magneti-
zation will produce a changing strain as in Eq. �8�. Finally,
the fourth rank crystal viscosity tensor, 
ijkl, determines the
heating rate per unit volume due to the time-dependent strain

Q̇ = ėij
ijklėkl. �11�

Employing Eqs. �8� and �11� and comparing the result to Eq.
�9� yields the central result of our model. For any crystal
symmetry the Gilbert damping tensor due to magnetostric-
tion coupling is rigorously given by

�ij = �4�

M
	��nmpiNp�
nmrl��rlqjNq� . �12�

The following properties of the Gilbert damping tensor in
Eq. �12� are worthy of note: �i� the Gilbert damping tensor �̃
is inversely proportional to the magnetization magnitude M.
�ii� The Gilbert damping tensor �̃ is proportional to the
squares of the magnetostriction tensor elements. �iii� The
tensor nature of �̃ dictates that the magnetic relaxation is
anisotropic. Finally, Eq. �12� can be derived on a micro-
scopic fluctuation-dissipation theorem basis as shown in Ap-
pendix.

V. COMPARISON WITH EXPERIMENT

To a sufficient degree of accuracy, one may employ an
average of the form

� =
1

3
tr��̃� = ��xx + �yy + �zz

3
	 �13�

defining a scalar function �. �iv� The crystal viscosity tensor

nmrl may be employed to describe the acoustic-wave
damping.18 For a mode label a, e.g., a longitudinal �a=L� or
a transverse �a=T� mode, the acoustic absorption coefficient
at frequency � is given by18

�a
−1 =

�2
a

2�va
2 , �14�

wherein va is the acoustic-mode velocity and � is the mass
density. Finally, for a cubic crystal, there are only two inde-
pendent magnetoelastic coefficients which may be defined

�xxxx =
3

2
�100 � − � B1

c11 − c22
� ,

�xyxy =
3

2
�111 � − � B2

2c44
� , �15�

wherein the Cauchy three index magnetostriction coefficients
are �ijk and the Cauchy elastic moduli are cij.

The Gilbert damping factor � may be deduced from the
measurement of the intrinsic FMR linewidth. However, the
measurement of the intrinsic linewidth is, indeed, very diffi-
cult. The reason for this conclusion is that there are too many
extrinsic effects that influence the measurement. For ex-
ample, in ferromagnetic metals such as Ni, Co, and Fe the
intrinsic linewidth contribution to the total linewidth
measurement19,20 may be between 10% and 30%. The rest of
the linewidth21 may be due to exchange-conductivity effects.

However, there may be other contributions, such as mag-
netostatic excitations, surface roughness, volume defects,22

crystal quality, interfaces,23 size, excitation of high-order
spin waves, etc.. Similar conclusions apply to ferrites except
there are no exchange-conductivity effects.21 Thus, the
reader should be mindful that when we quote or cite an ex-
perimental intrinsic value of the linewidth it may be an over-
estimation for there can be some hidden extrinsic contribu-
tions in an experiment. However, we have relied on data well
established over the years. The criteria that we have adopted
in choosing an ensemble of intrinsic linewidth measurements
are the ones exhibiting the narrowest linewidths ever mea-
sured in the single-crystal materials. In addition, we required
full knowledge of their elastic, magnetic, and electrical
properties.19–21,24 The objective is not to introduce any ad-
justable parameters.

The experimental value of Gilbert damping parameter
�exp may be deduced from the FMR linewidth H at fre-
quency f as

�exp =
3

2
��H

2�f
� . �16�

The factor 3 /2 assumes Lorentzian line shape of the reso-
nance absorption curve. The theoretical Gilbert damping pa-
rameter �th value is expressed in terms of known20 param-
eters so that there are no adjustable parameters in our
comparison to experiments, as shown in Table I. The theo-
retical prediction for the Gilbert damping parameter is that

�th =
36��

M�
��100

2

qL
2 +

�111
2

qT
2 	 , �17�

wherein � is the mass density, qT�vT
M

2�A is the transverse-
acoustic propagation constant, qL is the longitudinal-acoustic
propagation constant, vT is the transverse sound velocity, A is
the exchange stiffness constant, �100 and �111 are magneto-
striction constants for a cubic crystal magnetic material. The
transverse-acoustic propagation constant was approximated
on the basis that the relaxation process conserved energy and
wave vector. Since the acoustic frequency is fixed in the
process the longitudinal propagation constant may be also
calculated to be qL=qT�vT /vL� for magnetic materials,

RELAXATION MECHANISM FOR ORDERED MAGNETIC… PHYSICAL REVIEW B 81, 014412 �2010�

014412-3



wherein vL is the longitudinal sound wave velocity.
In Fig. 1, we plot the experimental and theoretical values

Gilbert damping constants as given by Eqs. �16� and �17�.
We note that the agreement between theory and experiment
is remarkable in view of the fact that any of the cited param-
eters could differ from the ones listed in Table I by as much
as 20–30 %. For example, the linewidth reported in Table I
may not be on the same sample where the elastic or magnetic
parameters were cited. In a few cases we needed to extrapo-

late the value of A since there was no published value. For
example, magnetostatic mode excitations have a deleterious
effect on the dependence of the FMR linewidth on size.
Most, if not all, previous FMR linewidth measurements have
been performed on slabs, whiskers, etc., which can indeed
support magnetostatic mode excitations. Additional compli-
cations arise as a result of exchange-conductivity excitations
in magnetic metals. In magnetic metals after separating pure
eddy current and/or exchange-conductivity losses the re-
mainder of intrinsic linewidth is described by the electron
viscosity. Thus our theory still holds true for electronic exci-
tations in ferromagnetic metals. The spin-wave scattering
contributions cannot be resolved within the statistical accu-
racy of the experimental data. Nevertheless, the agreement
between theory and experiment is quite satisfactory.

VI. CONCLUSIONS AND DISCUSSIONS

Qualitative and quantitatively our model is in agreement
with experimental observations of the intrinsic FMR line-
width reported over the years. Specifically, experimentally
the most important characteristics of the intrinsic FMR line-
width, H, measured on ordered magnetic materials �metal
or insulator� for the past 50 years are that H scales with
frequency and 1

M .19,25,26 Indeed, these are the predictions of
our theory. In addition, H scales with the magnetostriction
constant squared, see Fig. 1. Figure 1 was plotted in a loga-
rithmic scale only to be able to include all of the data in
Table I.

Another prediction of our theoretical work is that the Gil-
bert damping parameter �̃ is not simply a scalar parameter
but a tensor quantity. This implies that the FMR linewidth is
intrinsically anisotropic in single crystals of ferrimagnetic-
ferromagnetic materials. There was much controversy in
1970s about whether or not the intrinsic linewidth should be
anisotropic or not. Poor quality of samples seemed to have
incited the controversy. Improved or more accurate angular
linewidth data25 supports the notion of an anisotropic line-

TABLE I. Calculated and measured Gilbert damping ��� parameters.

Materials
qT

�10−6 cm−1� �100 �10−6� �111 �10−6�
M

�G /4��
A

�10−6 erg /cm�
H
�Oe�

f
�GHz�

�
�10−13 s� �th �10−5� �exp �10−5�

Y3Fe5O12
a 3.8 1.25 2.8 139 0.40 0.33 9.53 4.4 5.56 9.0

Y3Fe4GaO12
a 1.46 −1 −1 36 0.28 3.0 9.53 4.4 51 76

Li0.5Fe2.5O4
b 8.6 −8 +0 310 0.40 2.0 9.50 1.5 26 50

NiFe2O4
b 7.49 −63 −26 270 0.40 35 24.0 1.5 710 350

MgFe2O4
b 9.30 −10 −1 90 0.1 2.3 4.9 1.5 120 120

MnFe2O4
b 6.6 −30 −5 220 0.4 238 9.2 1.5 930 1040

BaFe12O19
c 9.6 15 350 0.4 6 55 1.5 18 26

Nid 6.3 −46 25 484 0.75 102 9.53 1.8 770 2600

Fed 8.75 20 −20 1690 1.9 9 9.53 1.8 30 220

Cod 5.1 80 1400 2.78 15 9.53 1.8 530 370

aGarnets.
bSpinels.
cHexagonal ferrite.
dFerromagnetic materials �note: longitudinal-acoustic wave constant is qL= �vT /vL�qT�.

FIG. 1. �Color online� Shown are the experimental and theoret-
ical values of the Gilbert damping constants as given by Eqs. �16�
and �17�. The data was statistically analyzed employing a likelihood
method with independent normal distributions of the slopes with
unit variance. The likelihood function is shown in the insert as a
function of the slope s=�ex /�th. We find that s=1.25�0.78 with
95% confidence and within one standard deviation matches the
theory. The uppermost and lowermost curves represent, respec-
tively, the maximum and minimum error values of the theory. The
central curve represents the maximum likelihood estimate.
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width in ordered magnetic materials in agreement with our
model.

In Table II we have listed the theoretical predictions of
other models as well as ours and compared with experi-
ments, both insulators and metals. In Eq. �42� of Ref. 28, the
final expression for Gilbert damping does not contain the
viscosity while our Eq. �12� contains viscosity as a central
feature of our model. The reason for the difference is that
there were no microscopic terms leading to sound-wave at-
tenuation in the model of Ref. 28. In Table II, the �−� mark
indicates the case where no predictions were made by a
given model. Also, experiments do not include data taken at
very low temperatures where the anomalous skin effects are
important in metals, for example. In summary, we believe
that the comparison between theory and experiment is very
encouraging in terms of continuing this continuum approach
to explain intrinsic linewidths in ordered magnetic materials.
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APPENDIX: KUBO FORMULAS

The Kubo transport expressions for the viscosity tensor
reads as follows: for large volume V, let the mean fluctuation
in the stress read

	̄ij�t� =
1

V
�

V

	ij�r,t�d3r , �A1�

and consider the correlation function

Gijkl�t − t�� = V�	̄kl�t��	̄ij�t�� . �A2�

With

� =
�

kBT
, �A3�

the Kubo formula for viscosity is


ijkl =
1

�
�

0

� �
0

�

lim
V→�

Gijkl�t + i��d�dt . �A4�

Similarly let the mean fluctuation in the magnetic inten-
sity read

h̄ij�t� =
1

V
�

V

Hi�r,t�d3r , �A5�

and consider the correlation function

Fij�t − t�� = V�h̄j�t��h̄i�t�� . �A6�

The Kubo formula for the Gilbert damping tensor reads

�ij

�M
=

1

�
�

0

� �
0

�

lim
V→�

Fij�t + i��d�dt . �A7�

Since Eq. �6� implies

h̄l = −
2

M
�ijklNk	̄ij , �A8�

it follows that

TABLE II. Functional dependence of Gilbert damping ��� parameters.

Relationships ���=0� ���n ���1 /M�n �B1�2 �B2�2 �̃

Our modela �0 n=0 n=1 Yes Yes Tensor

Ref. 27b �0 n=0 Tensor

Ref. 28c �0 n=0 n=1 Yes Tensor

Ref. 16d �0 n=1 Yes Tensor

Ref. 29e �0 n=1 n=1 Scalar

Ref. 30f �0 n=0 Scalar

Ref. 31g �0 n=0 Scalar

Ref. 32h �0 n=0 Scalar

Ref. 14i =0 n=0 Scalar

Ref. 33j =0 n=0 n=−1 Yes Yes Scalar

Experiment �0 n=0 n=1 Yes Yes Tensor

aTheory predictions for both ferromagnets and ferrimagnets.
bTheory predictions for Ref. 27.
cTheory predictions for ferrimagnets.
dTheory predictions for Ref. 16.
eTheory predictions for ferromagnets.
fTheory predictions for ferromagnets.
gTheory predictions for both ferromagnets and ferrimagnets.
hTheory predictions for ferromagnets.
iTheory predictions for both ferromagnets and ferrimagnets.
jTheory predictions for both ferromagnets and ferrimagnets.
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Fij�t� =
4

M2 ��nmpiNp�Gnmrl�t���rlqjNq� , �A9�

putting our central result

�ij = �4�

M
	��nmpiNp�
nmrl��rlqjNq� , �A10�

on a firm microscopic transport coefficient basis.
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